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Abstract. Starting from the basic constitutive equation that describes the magnetic viscosity of
a ferromagnetic material, under the single assumption of a constant externa fieldonnection

is shown between the different expressions used to determine experimentally the fluctuation field
Hy. The simplest method uses the relatiip = —dH/dInt|y,, . If Hy is invariant during

the viscous decay of the magnetization, the relatiin= —9H /9 In(M;,,)|y,,, may also be
employed. The relaxation curves obtained at different fields, in this case, superimpose onto
a single curveM;, (t) = F[t/t1/2] on renormalizing the time. An alternative treatment that
considers explicitly the demagnetizing field is also presented. The theory is then applied to
magneto-optic thin films, where two activation mechanisms are involved, assuming the absence
of dispersion in the energy barriers, and also to the common case of relaxation by a single
activation mechanism in the presence of a dispersion of the energy barriers. In both situations,
it is shown that the fluctuation field may vary in strength during magnetic reversal. A method
of classification of the hard ferromagnetic materials, through experimental means, is suggested.

1. Introduction

Magnetic viscosity, i.e., the time dependence of the magnetization under a constant external
field H, arises from the thermal activation of the magnetization over energy barriers that
are present when the fiel# is smaller than the coercive field. The time-dependent
magnetization is given in general a(t) = M;,.(t) + M,.,(¢t), where M,,,(¢) is defined
as the remanent component obtained by the instantaneous removal of thié f¢lidmer.
Variations ofM, ., with time are relatively small and arise for example from a magnetization-
dependent demagnetizing field. Here, we consider only the compadgpt), since
magnetic changes by thermal activation are irreversible.

If the activation is over a single energy barri€g, the time dependence should be
exponential:

M, (1) = A+ Be™'/™ (1)
where A, B are constants ang is the relaxation time given by the Arrheniuse® law [1]

1

= = foeBalkT )

To

where fy is a frequency factor of the order of 18-107%? s71 [1, 2].
For most ferromagnetic materials, however, the observed time dependence is logarithmic
over few decades in time:

Mirr(t) = Mo+ S ln(t/tO) (3)
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2624 A Lyberatos ad R W Chantrell

where My = M;,.(t = tg) and S is the coefficient of magnetic viscosity. It was recognized
by Street and Woolley [3] that the logarithmic dependence arises from a dispersion in the
energy barriersf (Ep) = ¢, wherec is a constant, since the dependence of each bdtger

on the respective relaxation time is logarithmic (equation (2)). The slow variation of the
coefficient S with magnetization, observed experimentally, can then be accounted for by
considering more realistic, non-uniform, forms for the dispersi@éfz).

An irreversible change of the magnetization may also be induced by a change in the
applied field, i.e. &1;,, = x;» dH, wherey;,, is the irreversible susceptibility. &l [4, 5]
therefore suggested that the effect of the thermal fluctuations may entirely be represented
as a fictitious field, which he called the fluctuation field. The definition of the fluctuation
field is [6]

S
Xirr )

The fluctuation field can be evaluated from macroscopic measurerf®nts,), does
not depend on the number of magnetic moments that change direction and provides
information on the activation mechanism. Wohlfarth [6] therefore argued that it is of
fundamental importance. The subject has since attracted much attention and a review is
given in reference [7]. Measurementsif can be used to evaluate an activation volume [6]

kT
- MgH;

Hy =

(4)

Va (5)

Alternative expressions for the measurement of the fluctuation field have recently been
suggested, for instancH; = —dH/dIn(t)|y,, [8, 11] and Hf = —3H;/d In(Mi,,)|u,,
[12, 16], whereM,,., = dM,,,/dt and H; is the internal field. The relationship of these
expressions with equation (4), however, has not been established. The former has the
advantage that it involves simply the measurement of the time required for the magnetization
to reach a certain value. The latter was derived by postulating the existence of a magnetic
constitutive relation, on the assumption that there is a unique relationship betivédn,,
and dv;,,/dt [12]. The assumption was justified by considering an Arrhenius rate relation
dM;,./dt « exp(—Eg(H;)/kT) that involves in effect energy barriers that are all equal in
size.

The conditions of validity of the assumption of an absence of a distribution in
energy barriers, however, need to be clarified. For instance, the magnetization reversal
in amorphous magneto-optic thin films may involve two distinct coercivity mechanisms,
domain nucleation and domain growth, with different coercive forces [17]. A distribution
in energy barriers is also expected from the spatial dispersion in magnetic properties.

The main objective of this paper is to derive the relationship between the different
expressions used to determine the fluctuation field experimentally. Two alternative but
equivalent treatments are considered, under the single assumption of a constant external
field. The first, in section 2.1, does not consider explicitly the demagnetizing field that
may be present in a ferromagnetic material. The second, in section 2.2, considers the
demagnetizing field to derive the intrinsic value of the fluctuation field that provides
direct information on the activation mechanism. The limitations in using the constitutive
equation of Estrin, McCormick and Street [12] and the relaitfin= d H; /9 In M},,|M‘.N in
treatments of magnetic viscosity [13, 16] are identified. The theory applies to any form of
time dependence; it does not assume a logarithmic decay. The precise form of the time
dependence depends on the choice of the dispersion in energy bagifseach activation
mechanism and is not considered at this stage.
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Two examples of the difference betwean= 9 H; /3 In M| M, and Hy are then given.
The first is the development of a model by Fatuzzo [18] that applies to the magnetic viscosity
of some magneto-optic media. It considers two activation mechanisms via nucleation and
domain growth without a dispersion in the energy barriers. The second is a treatment of the
case that is most common, a single activation mechanism with a dispersion in the energy
barriers. It is shown that in both casés = H; only if the activation volumes of the
moments are identical, and the physical implications are discussed.

2. Theory

2.1. Analytic expressions for the fluctuation field

We consider a ferromagnetic system with a well defined initial state, for instance the
saturation remanence. If a constant external figldis applied there is a spontaneous
irreversible response from the moments whose energy barrier has vanished, followed by a
slow viscous decay by thermal activation. The figlds then instantaneously removed after

a time intervalz. The remanent magnetizatiav;,, (that is a measure of any irreversible
changes) is clearly uniquely determined by the choicéf/of, although other factors, such

as a time-varying internal field, may also be of influence. An equation of state of the form
fM;,., H,t) = 0 can be constructed that is constitutive since the detailed form is dependent
on the ferromagnetic material. A Taylor expansion of the magnetization is then carried out
to a power series of small deviatiod$/, 5 In(¢). Although some different variable may
have been chosen,(n is a natural choice since it is the inverse function associated with
the exponential law for the relaxation time (equation (2)).8H, §In(¢) are sufficiently
small, we retain only the linear terms and define a constitutive equation in differential form
given by

dM;,, = S dIn(t) + x;,r dH (6)
where
8Mirr
S(H, 1) = )
aln() |y
is the observed coefficient of magnetic viscosity and
8]Wirr
irr H7t = 8
Xirr(H. 1) = = r (8)

is the observed irreversible susceptibility.

Equation (8) is the definition for the irreversible susceptibility appropriate for the study
of magnetic viscosity. Experimentally;,, is obtained using;,, = (M;,.(H + §H,t) —
M;,.(H,t))/8H, where M;,, is measured as described above. The common method of
measuringy;,-(H,t = 0) from the response to a field pulse of very short but undefined
duration, for exampley;,, = dM,(H)/dH, where M,(H) is the DC demagnetization
remanence curve, is restrictive and also difficult to apply when the time dependence of the
magnetization is very strong, since the results may not be repeatable.

The general form of the definition of the fluctuation field (equation (4)) is

Hy(H, 0 = D ©)
Xirr (H, t)
showing thatH; may be time dependent. A time dependence may arise from the gradual
variation in the magnetic properties of the moments during the viscous déGawill be
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positive provided that we adopt the convention tHat- 0 in the direction of switching of
the magnetization. Note also thgt.., S, Hr may alternatively be regarded as functions of
(H, Mirr) or (Mirrs t)-

An alternative but equivalent definition of the fluctuation field is obtained directly from
the constitutive relation (6):

oH

- . 10
alnti,, (10)

Hy =
Equation (10) has previously been derived for a system in which the metastable states
all have the same value of activation energy [10] and also for magneto-optic thin films
in which magnetic reversal is dominated by the expansion of the periphery of a region of
reversed magnetization [11]. In the present treatment, however, there are no assumptions,
so the fluctuation field can rigorously be determined experimentally by simply measuring
the time required for the magnetization to reach a certain value. For instance, it is related
to the time dependence of the coercivity
dH¢
din@)
that is of importance in magnetic recording [19, 20]. The timg for magnetization decay
to zero in commercial magnetic tapes is found to fit an empirical relation of the form
t12 = Toexp(—a §Hc), whereTy is a constant [19]. The fluctuation field in this case is
given by Hy = 1/a. The relationH; = 1/« has previously been demonstrated for a system
of perfectly aligned Stoner—Wohlfarth particles with energy barriers all of equal size [21],
whereas it is clear from the present discussion that it is of more general validity.
Equation (6) can be expressed in differential form as

1 1
din(t) = =~ dM;,, — — dH. (12)
S Hy
The right-hand side of equation (12) is an exact differential. The equality of the second
derivatives can be expressed as

Hf(Mirr - 0) - (11)

3 (1 OH*
A =__1 (13)
OH\S M;,, a]Mirr H
leading to
as oH
871_1 = _Xizrr aMf . (14)
M, irr |g
Similarly, from the differential equation® = (1/x;,») dM;., — Hy dIn() we obtain
a irr irr aH
X = K 25 (15)
oH M, Hy 0H |,
Using equations (7), (9), (10), the fluctuation field can be expressed as
S aS BN aM;,, | 9In@)
H=" =5 / Sl L
Xirr oH M, oH My, d |n(f) H oH M,
198 d
=1/-——-— —(nS —Inp)|uy,
/( som |, © 9H )|M'")
138 3 In(M;,,
—1f(-1 5] HWe)) ) (16)
S 8H Mir/‘ aH Mirr
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Hence
1 198 aIn(M;,,)

= (17)
Hy — S3H|y,, 0H

M,
Equation (17) is valid for any form of time dependence. Next, we consider some cases
of special interest.

2.1.1. The case wheBsS/dH|y,, = 0. If the coefficient of magnetic viscosity is a single-
valued function of the magnetizatial§ (M;,,)), then
as
0H |y,
It is possible to test experimentally whether equation (18) applies. The relaxation curves
M;,,(t), obtained for different values of the applied figi] should superimpose on a single
curveM;,,.(t) = F(t/ty) on renormalizing the timer, is the time required foM;,, to reach
a fixed valueMy. A convenient choice is the timg,, for the magnetization to vanish
(Mo = 0) and we write
M, () = F(t/t2). (19)
The superposition occurs if the fluctuation field is independent of the magnetization or
the time and is a single-valued function of the field (equation (14)):
dH; | _ 0H;
IMi,, |,y Ot
Clearly, for a given value oH, the curvesS(M;,,), xi--(M;,,) exhibit a maximum for
the same value o#4;,.. The fluctuation field is also given by (equation (17))
_ 0H
aIn(Mj,,)

—0. (18)

irr

S(M;,,) < = 0<<= H(H). (20)

H

Hy (21)

Miy,

It is clear that, from equations (10), (21)In M;,, |y, = —8In(t)|s,,. Equation (6)
can therefore be expressed as

1 1 .
dH = dMirr - Hf d |n(t) = dMirr + Hf d(ln Mirr) (22)
Xirr ’ Xirr
where
aIWirr
irr H,t)= 23
Xirr(H, 1) = =8 . (23)

and Hy is given by equation (21). The constitutive equation (22) is appropriate when the
time dependence of the magnetization satisfies the condition (18).

2.1.2. The case whe#g;,,/0H |y, = 0. The irreversible susceptibility is a single-valued
function of the magnetization if the fluctuation field is independent/cdind M;,,, and can
be regarded as a single-valued function of time (equation (15)):
_OH;| _ 0H;
w,  OH |, M,
For a given value of, the curvesS(H), x;-(H) then exhibit a maximum value at the
same value of the field, in the region of the remanent coercivity.

8Xirr
oH

Xirr(Mirr) — =0 Hf(t) (24)

t
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2.1.3. The case whe®S/0H |y, = Oxirr/0H|m, = 0 If S and y;,, are both single-
valued functions ofV;,,., the fluctuation field can be regarded as a constant (equations (20),
(24)):

S(Mirr) = Hinrr(Mirr)~ (25)

The coercivityH¢ is then logarithmically dependent on time (equation (11)).

There is experimental evidence that for some Tbh—-Fe—Co thin films [11, 22] the
considerations in sections 2.1.1-2.1.3 apply. A more detailed presentation of the evidence
is given in section 5.

2.1.4. The case of a monodispersed systeNext, we consider thermal relaxation over

energy barrier€ p that are all of equal size, dependent on the figldut invariant over time.

Two implicit assumptions are involved, the absence of a time-dependent demagnetizing field

and a negligible probability of activation back to the original state. In section 3, it is shown

that Eg may only be an effective barrier arising from two different activation mechanisms.
The time dependence of the magnetization is given by

M, (1) = F[R(H)t] (26)

where R « e £5/¥T s 3 rate of activation that remains constant with time. The rate of
change of the magnetization is derived as

Mrr = .irr(EB = O)e_EB(H)/kT' (27)

Equation (26) is a sufficient condition for the superposition of the relaxation curves
(equations (18), (19)) and in fact equation (27) implies a unique relationship between
M;,,, M;,., H that demonstrates the validity of the constitutive relation (22) [12]. In section
4, however, it will be shown that equation (18) is compatible with a dispersion in barriers,
so equation (26) is not necessary for the superposition to be observed.

The fluctuation field obtained from equations (21), (27His= —kT/(0Ep/dH)|u,
and, using equation (20), it may be expressed as

IE DE
Hy = —kT [ "2 = —k1 /S22
- oH |, dH

2.2. Consideration of the demagnetization factor

irr

(28)

My,

Here we present an alternative treatment that considers explicitly the internaHfiétda
mean-field approximation

H =H— DM (29)

where D is a scalar demagnetization factor abtd= M;,, + M,.,.

If a sample with a well defined initial state is subject to a constant fi¢ltbr a time
interval¢, the remanentM;,,) and the reversiblé/,.,-component of the magnetization can
be evaluated. Using equation (29), it can be shown that the internal Hield uniquely
determined by/;,, and¢, and we define therefore a constitutive equagom;,,, H;, t) = 0
that in differential form is given by

8Mirr aIwirr

irr = d In(t) +

aIn(t) |, oH; |,

where Sy, x.., are the intrinsic values of, x;,» respectively, i.e., the values that would be
observed if there was no demagnetizing fief?l £ 0).

dH; = So dIn() + x/,, dH; (30)
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The intrinsic value of the fluctuation field is given by

So(H;, 1)  0H;

Hi(H;, 1) = — =_ .
i ) X, (Hi, 1) alntl,,

(31)

As in section 2,H; will be positive if we adopt the convention th&f; > 0 in the
direction of switching of the magnetization, i.® > 0 for magnetizing and> < 0 for
demagnetizing processes.

We consider next the relationship between the intrinsic and observed values of
xirr» S, He. Equation (30) implies that

aMirr 8]Mirr 8Hz
- (32)
OH dH; |, 0H |,
leading to
i Xirr
P 33
Xlrr 1 _ DX ( )
wherey = dM/dH|,. Using equations (30), (31) we obtain
alnt dlnt 0H;
- (34)
OH [y, 0H; |y, O0H [y,
leading to
‘ M,
1L1;.=1L1f<1—D8 e ) (35)
IH |y,
Using equations (9), (31), (33), (35), we obtain
1— D dM,.,/0H |y,
So=S = 36
o= s PO e e | (36)

SinceDy > 0, it can be verified thag! = > xir, H} < Hy.

The reversible component of the magnetization is dependent on the magnetic
configuration §4;,,), since the contribution of a magnetic moment &5,, may change
following the activation process. Using equation (6) we obtain an expression for
the reversible susceptibility that considers explicitly the dependence on the irreversible
magnetization:

OM, e
oH

OM,; ey
aIwirr

Xrev = (37)

= Xirr .
t t
The definition fory,., is consistent with equation (8). It is appropriate for the study of
magnetic viscosity, but different tdM,., /9 H|y,, which is normally used in the study of
static properties.

The relations (33), (35), (36) are different in their detailed form to the expressions given
by Street, Day and Dunlop [23]. In their model, the relationship between the intrinsic and
observed susceptibility is of the forxw',. = xi.-/(1 — Dxir), and similarly fory/, , x'.

This definition, however, results in the conditigh = x/,, + x/ . not being satisfied.

The intrinsic fluctuation field can be expressed as in equation (17):

1 13
Hi ~  SodH,

3 In(M;,,)
My I H;

(38)

My
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2.2.1. The case whereSy/dH;|y, = 0. Here it is shown that this is the case that
was considered in references [12, 13, 15, 16] and a criterion is derived to determine
experimentally when it is applicable.

The treatment in section 2.1.1 is here valid on repladifg;,., S, Hy by the respective
intrinsic valuesH;, ., So. H. In particular, the constitutive relation (22) can be expressed

as

1 . .
dl‘], = i dMirr + H; d(ln Mirr) (39)
where

8Iwirr
irr(Hi 1) = 40
Xirr (Hj, 1) 9H, |y, (40)

. JdH;

I (41)

el In(Mirr) M,

If the reversible magnetization can be ignored or alternativelyDif= 0, then
equation (35) reduces tH; = H; and using equations (17), (38) we obtain

198%|  10S
So0H; |y — SO0H|,,

The validity of equation (39) used in references [12, 13, 15, 16] can be established
experimentally—for instance, by testing whether the following sufficient condition is
satisfied: x,., = 0 (or D = 0) coupled with an invariance of the shape of the relaxation
curves with applied field (equation (18)).

The validity of equation (39) does not arise, however, as is implicitly assumed in
reference [12], from the absence of a dispersion in the energy barriers. If the energy
barriers of all moments are equal in siZg(H;), but vary in time, the general form of the
relaxation curve is

(42)

M;,(t) = F(R(H;)t) = F(R(H, 1), ). (43)
Using T = R(H,;)t, it can be shown that
M;,, 1 0R
95 = dM; Tzi 1R . (44)
oH M, dr oH | R? at ulln,,

Since the rate of relaxation is time depende®t;), it is clear that equation (43) is not a
sufficient condition for the validity of equation (22).

3. A model of the time dependence of magneto-optic media

In magneto-optic thin films, the reversible component of the magnetization can be neglected
to a good approximatioiM;,, = M). For example, the measured value of the saturation
remanence in ultrathin Co films &g > 0.99M [24]. The intrinsic and observed values

of the fluctuation field are then equivalet®i, = H}) and are independent of the sample
shape (equation (35)). The main objective, here, to evalHatean therefore be achieved
using a model by Fatuzzo [18] that does not consider the demagnetizing fletd 0).

The values ofy;,,, S obtained from the Fatuzzo model, however, should be corrected for
the demagnetizing field (equations (33), (36)), an important experimental consideration.
Irreversible magnetic changes against the direction of the applied field are negligible in
practice and are ignored by the model.
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The Fatuzzo model considers two concurrent activation mechanisms: domain nucleation
and domain growth. The model assumes the nucleation of circular domains at a constant
rate R with an initial radiusr. and subsequent growth at a constant veloeityThe time
dependence of the magnetization is then given by

M(t) = Mg(2e8™9 — 1) (45)
wheret = Rt,k = v/Rr. and

—1\2 _
g(t, k) = —2;(2[1— (t+cH+ Cre) eTl-«YH - 1 T]. (46)

2 22

The shape of the curve® (r) depends only on a single parameter On fitting the
experimental curved/ () to the analytic function (46) [25], an estimate wofis obtained
that provides a measure of the relative balance between the rates of nucleation and domain
growth. The rate of nucleatio®R and the rate of expansion of the domain radius are
related to energy barrierBy, Ey according to Arrhenius relations (equation (2)) of the
form

R=fo g En/kT
v = fod e Ev/KT (47)
whered is the average separation between pinning sitess. then given by
K= ﬁe‘(EW‘EN)/"T. (48)
re

The coefficient of magnetic viscosity and the irreversible susceptibility are obtained
using equations (7), (8):

3
S =2Mget 8 (49)
aln@) |y
g
i = 2Mg €8 —2- 50
X s, (50)

The fluctuation field is then obtained from equations (49), (50):

g dg dr dg dx
H, =28 /(9809 , 98 Ok 51
1= T (ardH, ox dH |, 1)
and using equations (47), (48)
dEy oEw kT 1
Hy=—kT [|A=2)—"| 42| )= 52
4 /<( ol ,+ OH ,) Mg (1— 1) Vy + AV (52)
where
a ad
A= K—g (tg> (53)
oK ot

and Vy, Vy are the activation volumes of thermo-activated domain nucleation and domain
growth respectively defined from

vy = L dEx
N T Mg dH
1 dEw

H=———. 54

Vw (H) M, dH (54)

Equation (54) is the definition of the activation volume given by Gaunt [26] that is
consistent with the definition of Wohlfarth (equation (5)) in the case of strong domain
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wall pinning and no nucleation. The difference between the two definitions is clear from
equations (5), (52):

Va=(1—A)Vy+AVy. (55)

Vwn, Vw are related to individual activation events, Bp may be regarded as an average
value of the activation volume.

The energy barrier€y, Ey are invariant during magnetic reversal in the model of
Fatuzzo (since the rates of activation are constant), so the activation volumes defined by
equation (54) are independent of the time or the magnetization.

A K=})00

=3
[
i Lod

0.1

Loddnm i bl

o
L B EARR TR L LT sy o s s o R

-1.0 -0.76 -0.5 -0.26 0.0 0.25 05 0.75 1.0

M/Ms

Figure 1. The dependence of the factardefined by equation (53) on the magnetizatidn
Results are presented for different values of the parameter

The time dependence of the fluctuation field is determined by a single paranetey.
The variation ofA during magnetic reversal is shown in figure 1, and the variation with
« in figure 2. Two basic trends can be identified. First, an increase in the valudsof
observed during magnetic reversal, from a minimum value 0 atr =0 (M/Ms = 1) to
a maximum value when the reversal is complete. This arises from the relative increase of
the contribution of the domain growth to the magnetic reversal, in particular during the later
stages of the reversal process (figure 1). Hence, no significant increasis observable,
when the reversal is primarily by domain nucleatian« 1) (figure 1). Secondly, for the
same reason, for any fixed value &f, an increase of the value afwith « is observed in
figure 2 to a maximum valug = 2/3 (as will be shown shortly).

The dependence of thg,,, S, Hy on magnetization during the reversal process is shown
in figure 3 fork = 0.2, Vy/Vy = 1.4. The fluctuation field has an initial value at saturation
Hy(t =0) = kT/(MsVy) and decreases during the entire reversal process, as a result of
the associated increase of(figure 1) and the choice made for the ratig /Vy > 1. The
limit Hf = kT/MsVy (1 = 1) is never reached, probably as the result of the existence of
a finite probability of nucleation throughout the reversal process. A reduction by 10% was
detected in a Gd—Tb-Fe film [10, 25], and although the activation volufped’y are not
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0.7

06

05

0.4

03

0.2

0.1

Figure 2. The dependence of the factoion the parameter. Results are presented for different
values of the resolved magnetizatiolt/ Mg = 0.95, 0.5, 0, —0.5, —0.999.

reported, the data for similar Gd—Tb-Fe films [25] indicate hat> Vy as expected from
figure 3. The large reduction by 10% occurs since the parameteeasured for this film
has an optimal value = 1 [25]. This is shown more clearly in figure 1. For< 1 or
x > 1 the value ofs remains approximately constant for the range of magnetization values
that is accessible experimentally and the observed variatidii;offould be imperceptible
in this case within experimental error. In fact, a reductiorHpfby a mere 3% was reported
for a thin Th—Fe—Co film, where magnetic reversal is dominated by domain wall motion
(« > 1) [11].

Next, we consider three cases of special interest in more detail.

(i) « <« 1. If the magnetic reversal occurs primarily by domain nucleatior, —7 and
A — 0 and the fluctuation field is given by

dEw
=—kT / MS Vy ' 56)

(i) « > 1. If the magnetic reversal is dominated by domain expansion, it was
shown by Fatuzzo [18] thaRr « 1. Equation (46) then reduces o= —«?73/3 and
lim,._ . A = 2/3. The fluctuation field can be expressed as

dEB kT
H = —kT = 57
! / = Ms[(Vy + 2Vy)/3] 7
where
_ E 2E
Ey= N T oEw +3 v, (58)

The relaxation can be described by a single batfigr If R’ is an effective rate given
by

R = foe Bo/kT (59)
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1.0
—////’,

o'st He Xirr

0e- 5

0.7+
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0.2-

0.1:

Lo o e L L L A L LY LB
-1.0 0.75 0.5 -0.25 0.0 0.28 0.5 0.76 1.0
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andt’ = R’t, the time decay can be expressed in a form that does not include the field-
dependent parameter

M(t)) = Ms[2e~ @373 7). (60)

(i) de/dH = 0. This condition is satisfied when the activation volumes of nucleation
and domain growth are equal in size, i.8y(H) = Vi (H), for all fields H. The fluctuation
field can then be written directly from equation (52) as

= i %N dEn _ 1 ) dEw _ MSVN (61)

For the three cases considered above, the time dependence of the irreversible magnet-
ization can be expressed as

M(<'(H)) = M(R'(H)t) (62)

where R” = R for the cases (i) and (iii), and is given by equation (59) for case (ii). The
shape of the relaxation curves is then invariant with applied field (equation (26)). The
average activation volume gy = Vy, if k < 1 or de/dH = 0, andV, = (Vy + 2Vy)/3,

if x > 1 (equation (5)). The fluctuation field is invariant with magnetization (equation (20));
however,y;,» may still depend on the applied field.

The constitutive equation (39) is often used [10, 12] to describe the time dependence of
magneto-optic thin films. It is therefore interesting to consider to what extent the relation
A = 3dH/dIn M|, (equation (21)) approximates the exact value of the fluctuation field. A
numerical evaluation of\, H; was carried out for the system whose time dependence is
described by the Fatuzzo function (45). The results Aprobtained using equations (9),
(10) are indistinguishable. The rativ/H; is shown by the isoline curves of the contour
maps in figures 4 and 5. The results are consistent with the previous discussion, i.e., if
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Figure 4. A contour map of the ratio\/H; as a function ofc and the ratio of the activation
volumesVy /Vy whenM = 0.

k < 1,k > 1orVy = Vy, the conditiondS/dH|y = O is satisfied and\ = H;. In
general, however, there may be a difference betweemd Hy. For instance, iy > Vy,
then dc/dH > 0 (equations (48), (54)), and the Fatuzzo model predictsabigd H|,; > O
(see figure 4 of reference [25]). According to equation (IW)H; < 1, as is observed in
figure 4. Figure 5 indicates in addition that a significant difference betweand H; may
be observable for any value of the magnetization, within a certain range of values for
Suppose that in addition to the condition (18), the assumption is also made that the
average activation volum&, is independent of the applied field. The fluctuation field
Hy is then constant in magnitude (equations (5), (24), (25)) andis a single-valued
function of the magnetization. These considerations appear to apply for some Th—Fe—-Co
thin films [22], where both a weak dependenceHf on H, M;,, and the superposition
of all of the x;.,(H,t), S(H,t) curves when plotted as a function of magnetization are
observed. Equations (11), (25) also predict in this case a logarithmic time dependence of
the coercivity that is in agreement with experimental observation [11, 27].
A more detailed account of the coercivity is obtained from equation (45):

g(t, k) +In2=0. (63)

If the activation volumes are independent of the applied field, the energy batfieisy,
are given by

Ey = ES — MgVyH
Ew = ES — MsVyH.

The rate of nucleatioR can be expressed as
R = RoeMsVwH/KT (65)

(64)
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where
0
Ro= foe "/ (66)
The solutionzy(x) of equation (63) can be expressed as
Vi Hc / kT
To(k) = R(H)ty2 = Ro€s"WHe/M 5. (67)

One may also define the temperature- and time-independent intrinsic coercive force of
nucleation,Hy, as the field that makes the energy barrier of nucleation vanish:

EY _ kT fo
MSVN_MSVN Ro

Using equations (67), (68), we obtain an expression for the time dependence of the
coercivity:

Hy = (68)

kT fot1y2
Hc(1) Hy MgV In I:‘L'O(/{)i| . (69)
The dependence af on « is shown in figure 6. If condition (18) is not satisfied (i.e.,
d«/dH # 0 andk in neither too small nor too large) the dependence of the fieldH, as
shown in figure 6, becomes significant and equation (69) indicates that it results in a strictly
non-linear logarithmic time dependence for the coercivity. Conversely, if (18) is satisfied,
the gradient @ /d In(z) provides information through equations (5), (11) on the effective
activation volumeV,. In figure 7, the logarithmic time dependence of the coercivity
is shown for different values chosen for assuming that«/dH = 0. An increase in the
relative rate of domain growth results in lower coercivity for a fixed time of measurement
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Figure 7. The logarithmic time dependence of the resolved coercifity/ Hy for different
values ofk, usingk7T/E® = 0.01.

as is physically reasonable. In previous work [25], the logarithmic time dependence of the
coercivity was demonstrated far<« 1 and« > 1 only.

An increase of the fluctuation field with coercivity is predicted under some
special conditions, for instance, on allowing variations in the value of the factor
(d/rc)exp(—ESV/kT) and considering/y /Vy > 1. The variation of the coercivitydc
in this case arises from the dependencergir). A typical H; versusH¢ plot is shown in
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figure 8. The observed increase has no connection with the Barbier relafibroinH that

is observed for a wide range of materials of different magnetic hardness [6, 28], including
magneto-optic media [10, 25]. The sharp increase in the coercivity of Gd—Th—Fe films [25]
is not accompanied with a substantial variatior inThe Barbier relation appears to involve
rather a relation between the intrinsic activation ener@i@s EY, and the fluctuation field,

and requires therefore a study of the detailed activation mechanisms.

The Fatuzzo model predicts an exponential decay of the magnetization when the
nucleation process is dominant; however, the decay observed experimentally is logarithmic
[24]. The distribution of energy barriers should then be considered and a detailed study
follows in the next section.

4. Magnetic viscosity arising from a single activation mechanism

The general treatment of a dispersion in the energy barriers is presented in section 4.1. The
case of the barriers being coupled to a single physical parameter is considered in section 4.2.
Finally in section 4.3., we consider the physical implications when the shape of a sample
is allowed to vary.

4.1. Relaxation over a dispersion of the energy barriers

As in the previous section, we ignore the demagnetizing fi&d= 0) and any magnetic
changes that are either reversible or against the direction of the applied field, to simplify
the presentation. Since the objective is simply to establish the relation bettwveen
dH/3In M|y and Hy, the precise form of the time dependence is not important and these
assumptions should not affect our conclusions.
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The time dependence of the magnetization of a system of perfectly aligned moments is

M(H,t) = Mg <2/oo eit/rof(l'o) drp — 1) (70)
0

where f(1p) is the dispersion in relaxation times. Singgis exponentially dependent on
the energy barrieEg (equation (2)), it is possible to define a time-dependent activation
energyEy(t) = kT In(fot) such that e/ ~ 0 if Ez < Ej, and €/ ~ 1 if E > E},.

The time dependence of the magnetization can therefore be expressed as

o0

ER()
where f(Eg, H) is the normalized distribution of energy barriers. The coefficients of
magnetic viscosity and irreversible susceptibility are obtained using equations (7) and (8)
respectively:

dE]

S(H,t) = —2Ms f (E}, H)Wg) = —2MkTf(Ey(t), H) (72)
, dE
Xirs (H. 1) = 2Ms f (E}p. H) o : (73)
Ep=Ej(t)
The fluctuation field is therefore given by
dEp

Hi(H,t) = —kT | —~ . (74)

‘ / dH Ep=E}(t)

Equation (74) is similar to the expression derived by Gaunt [29]; however, it considers
also the time dependence Hf;. We are interested in evaluating the tedi$yd H|,, that is
given by

N

E,, H
7 =—2MSkTM
oH

" IH (75)

M
Substitution of equations (72), (73) in equation (6) gives a relationship betd&gn

and$§ H when the magnetization is held constant:

an@r)|  0Ey|  dEg

kT = =2
oH |, 0H|, dH

(76)

Ep=E}(1)

The field dependence of the energy barriers is determined by the individual activation
volumes of the moments, that are given from equations (5), (74) as

1 dE
Vo= L9

Mg dH (77)

EB=E;,,(I)

An implicit assumption in our treatment is the continuous variation of the energy barriers
Ep with applied field. It is therefore possible to apply the continuity relation

af 3 dEg
4+ —\f=—])=0. 78
ol * 8EB< dH ) (78)
A Taylor series expansion of, truncated to first order, gives
af af
f(Ep+0Ep, H+6H) — f(Ep, H)~ — §H + — §Ep (79)

oH 0FEg
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valid for arbitrary but small variationsE g, § H. Equation (78) implies correlated variations,
such that§Ez/SH = dEz/dH. Using equations (78), (79) we obtain the following
expression valid to first order:

5H. (80)

3 (dEg
f(Eg+é8Ep, H+0H) — f(Ep, H) = —f<)
H

dEg \ dH

At constantM, equation (76) implies a similar correlationdik’, ands H. Application
of equation (80) in equation (75) yields

as o (dE
2 = 2MkTF(E, (1), H)— =2 . (81)
dH |, 0Ep \ dH |, _p )|y

Using equations (72), (77) we obtain
108 o (dE av
oA ——— EyYRACY (82)
SOH |y 0Ep\ dH |g,_p /|y IEg |y

The relation betweem = dH/dIn M|y and H; is given by equations (17), (82). If
the activation volumé/, of all moments is identical, i.e 5 (V,) = §(V4 — fo), then the
term (1/S)0S/0H |y = 0 andA = H;. The relaxation curves at different fields then fit on
a single curveM (t) = F[In(¢/t12)] (section 2.1.1). This relationship was observed in Co
films of thickness of the order of few atomic monolayers [24] and results from the activation
volume being decoupled from the physical mechanism that gives rise to the dispersion in
energy barriers.

4.2. Dependence of the energy barriers on a single parameter

Suppose that the energy barriers are coupled to a single physical property, for example,
the volumeV of each magnetic moment, and that the variatiog(V) is monotonic on
average. The energy, would then be associated with some critical volumgH, ¢). The
normalized distribution functiog (V) is obtained from

0FEg

V)= f(Eg, H . 83
g(V) = f(Eg )av ; (83)
The coefficient of magnetic viscosity may then be expressed as
dE,| 17t
S = —2M5kTg(VC)|: B ] : (84)
Ve |y
The termdS/0H|y can be expressed as
as 3S 3 [OE,|™
2 =0 = _2MgkTg(Ve)— | =B . (85)
oH |, O0H Ve OH | 0V |y Ve
Hence, we obtain
148 3 dE, |t v
e = ] et =M " (86)
SaH|, 0H WVely )1y, IEg |y

in agreement with equation (82). If the dependeigV, H) is known explicitly, then
the relation betweem\, Hy can be evaluated from equation (86). For exchange-decoupled
domains that reverse coherently [30],

H\2
E, = Ky Ve (1 - ) (87)
Hg
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where Hy = 2Ky /My, and substitution in equation (86) yields

198 2 1

i (88)
S0H|, Hxl— H/Hg

SO A # Hy.

4.3. Variation of the sample shape

It is interesting to consider briefly the effects of a variation of the shape of the sample, by
allowing the demagnetization factd» to increase. To simplify the discussion, reversible
magnetization changes are ignored.

The observed values of;,,, S are given byy;, = x/,/(1+ Dx},) and S =
So(1 — Dy;r) (section 2.2). Sincey;, > 0, a reduction in the observed valugs,, S
arises from an increase of the magnitude of the demagnetizing fiéfd that is closely
related to the observed shearing of the hysteresis loops. The shearing occurs since the
irreversible response of the magnetizatid, x.,) is dependent on the dispersion in the
energy barriersf (Eg) and the size of each barrier is modified by the internal fid}d
A larger field variationAH is required for a net changa H;, when the demagnetizing
field is strong. The fluctuation field, however, is independent of the dispersid@n)
(equation (74)) and it is not surprising that no demagnetizing field correction is required
(Hy = Hp).

The precise form of the dependence of the energy barriers on the internal field
Eg(H; = H — DM) is determined by the activation mechanism, and information can
be provided by measurement &f;. A linear dependence of the energy barriers on the
demagnetization factor arises, for example, whgnis invariant with the applied field
(section 2.1.2).

5. Discussion

The fluctuation field of a magnetic material, under constant external-field conditions, can be
determined experimentally from relaxation curvés..(t) only, usingHy = S/ ;. or the
waiting time method:Hy = —0H/d In(t)|u,,. If the shape of the curves is independent of
the choice of applied field, i.e. they fit a single cuWé;,, (t) = F(t/t1/2)) on renormalizing

the time, ther®S/d H|,,, = 0 and the fluctuation field is given by an alternative expression:
Hy =0H/dIn M',-,,|M[,,. In practice, however, the usefulness of this expression is restricted
in the region of remanent coercivity [14], since any variatitdin ;.. must be large to

be measured without substantial experimental error. The waiting time method is therefore
more rigorous. It is also simpler than the useHf = S/x;... For instance, the intrinsic
value of the fluctuation field can be deduced directly far, = O using equation (35), and
does not require a correction 6f x;., for the demagnetizing field.

The present theory is suggestive of a connection between two common experimental
observations: the superposition of the relaxation curyds..(r) = F(t/t12)) and the
invariance of H; with magnetization. The former has been observed for magneto-optic
media such as Gd-Fe, Gd-Th-Fe and Tb(Co)-based alloys [25], Th—Fe—-Co [11] and
ultrathin Co films [24]. A slow variation of; with magnetization has been reported for
magneto-optic media such as Gd-Th-Fe [10] and Th—Fe—Co [11}; @cdDrding particles
[16], sintered PiFe4B [16] and isotropic Nd—Fe—-B permanent magnets [12]. At present
strong evidence for the existence of a connection between the two experimental observations
exists only in the case of Tb—Fe—Co [11].
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It is interesting to consider the physical reason for the slow variation of the fluctuation
field with magnetization. The fluctuation field is then dependent on some avejageer
the activation volumes of the moments switching during a certain time interval, and each
of these is determined by the individual mechanism of reversal (equations (5), (55), (74)).
Givord et al [31] have shown tha¥, = 6% in NdFeB sintered magnets, wheseis the
average domain wall width. The activation volume of elongated particles such asi<rO
much smaller than the actual particle size [32] and may be dependent on the particle cross-
sectional area and domain wall energy [33]. These two examples indicate the possibility
that the activation volume is determined by the intrinsic material properties and may only
be weakly correlated to the grain size.

The time dependence curves cannot be made to superimpose for all magnetic materials,
for instance Th/Fe [34] and Co/Pt [27] multilayers. In this case the constitutive relation (6)
rather than (22) should be used.

By development of the theory of Fatuzzo [18], the fluctuation field for magneto-optic
thin films was evaluated. The expression derived by Gaunt (equation (74)) is no longer
applicable, since it involves the implicit assumption of a single activation mechanism. The
fluctuation field was shown to exhibit a variation in strength during magnetic reversal if
there is a difference in the activation volumes of nucleation and wall motion that arises
from the gradual increase of the relative contribution of domain growth to the irreversible
magnetic changes during the reversal process. A similar but rather small variation was
detected in a Gd-Tbh—Fe thin film [10]; however, to test the theory the measurement of the
activation volumes of nucleation and wall motion is also required. If the activation volume
of a magneto-optic thin film is determined experimentally using the definition adopted by
Wohlfarth [6]: V4 = kT /(MsHy), this value represents some average over the activation
volumes of nucleation and wall motion. The relative balance is described by the factor
in the model (equation (53)). The value bfappropriate for magnetic reversal occurring
primarily by domain growth X = 2/3) was experimentally verified by Labrum al [25].

The present treatment allows the evaluation of that factor in other cases as well.

The conditiondS/dH|y, = O is satisfied in the Fatuzzo model if the magnetic
reversal is primarily by domain wall motion or when the activation volumes of thermo-
activated nucleation and wall motion are identical. If the magnetic reversal is by continuous
nucleation, the Fatuzzo model is not appropriate and a different approach is required that
considers the dispersion in the energy barriers. The condit&® H |, = O then is
satisfied only if there is no associated dispersion in the activation volumes. The relaxation
curves then should fit a relatialf (r) = F[In(¢/112)] in agreement with experimental data
on ultrathin Co films [24]. This relation does not represent, however, a universal law,
since it is not satisfied, for example, by fine-particle systems that exhibit coherent magnetic
reversal.

In summary, it appears that the hard ferromagnetic materials can be classified into two
categories.

(a) Magnetic materials for whichS/d H |y, = 0 that exhibit an absence of a dispersion
in activation volumes (e.g., some Th—Fe—Co thin films and possibly @¢drding particles,
Nd—Fe—B permanent magnets, and multi-domain particles).

(b) Magnetic materials such as those exhibiting coherent magnetic reversal (single-
domain particles) and multilayers for magneto-optic recording for which the above
considerations do not apply.

The available experimental evidence is rather limited at present and more data are
needed to test the predictions of the theory.
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