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Abstract. Starting from the basic constitutive equation that describes the magnetic viscosity of
a ferromagnetic material, under the single assumption of a constant external fieldH , a connection
is shown between the different expressions used to determine experimentally the fluctuation field
Hf . The simplest method uses the relationHf = −∂H/∂ ln t |Mirr . If Hf is invariant during
the viscous decay of the magnetization, the relationHf = −∂H/∂ ln( ˙Mirr )|Mirr may also be
employed. The relaxation curves obtained at different fields, in this case, superimpose onto
a single curveMirr (t) = F [t/t1/2] on renormalizing the time. An alternative treatment that
considers explicitly the demagnetizing field is also presented. The theory is then applied to
magneto-optic thin films, where two activation mechanisms are involved, assuming the absence
of dispersion in the energy barriers, and also to the common case of relaxation by a single
activation mechanism in the presence of a dispersion of the energy barriers. In both situations,
it is shown that the fluctuation field may vary in strength during magnetic reversal. A method
of classification of the hard ferromagnetic materials, through experimental means, is suggested.

1. Introduction

Magnetic viscosity, i.e., the time dependence of the magnetization under a constant external
field H , arises from the thermal activation of the magnetization over energy barriers that
are present when the fieldH is smaller than the coercive field. The time-dependent
magnetization is given in general asM(t) = Mirr(t) +Mrev(t), whereMirr(t) is defined
as the remanent component obtained by the instantaneous removal of the fieldH at time t .
Variations ofMrev with time are relatively small and arise for example from a magnetization-
dependent demagnetizing field. Here, we consider only the componentMirr(t), since
magnetic changes by thermal activation are irreversible.

If the activation is over a single energy barrierEB , the time dependence should be
exponential:

Mirr(t) = A+ Be−t/τ0 (1)

whereA,B are constants andτ0 is the relaxation time given by the Arrhenius–Néel law [1]

1

τ0
= f0e−EB/kT (2)

wheref0 is a frequency factor of the order of 10−9–10−12 s−1 [1, 2].
For most ferromagnetic materials, however, the observed time dependence is logarithmic

over few decades in time:

Mirr(t) = M0+ S ln(t/t0) (3)
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whereM0 = Mirr(t = t0) andS is the coefficient of magnetic viscosity. It was recognized
by Street and Woolley [3] that the logarithmic dependence arises from a dispersion in the
energy barriersf (EB) = c, wherec is a constant, since the dependence of each barrierEB
on the respective relaxation time is logarithmic (equation (2)). The slow variation of the
coefficientS with magnetization, observed experimentally, can then be accounted for by
considering more realistic, non-uniform, forms for the dispersionf (EB).

An irreversible change of the magnetization may also be induced by a change in the
applied field, i.e. dMirr = χirr dH , whereχirr is the irreversible susceptibility. Ńeel [4, 5]
therefore suggested that the effect of the thermal fluctuations may entirely be represented
as a fictitious field, which he called the fluctuation field. The definition of the fluctuation
field is [6]

Hf = S

χirr
. (4)

The fluctuation field can be evaluated from macroscopic measurements(S, χirr ), does
not depend on the number of magnetic moments that change direction and provides
information on the activation mechanism. Wohlfarth [6] therefore argued that it is of
fundamental importance. The subject has since attracted much attention and a review is
given in reference [7]. Measurements ofHf can be used to evaluate an activation volume [6]

VA = kT

MSHf
. (5)

Alternative expressions for the measurement of the fluctuation field have recently been
suggested, for instanceHf = −∂H/∂ ln(t)|Mirr

[8, 11] andHf = −∂Hi/∂ ln(Ṁirr )|Mirr

[12, 16], whereṀirr = dMirr/dt andHi is the internal field. The relationship of these
expressions with equation (4), however, has not been established. The former has the
advantage that it involves simply the measurement of the time required for the magnetization
to reach a certain value. The latter was derived by postulating the existence of a magnetic
constitutive relation, on the assumption that there is a unique relationship betweenH,Mirr ,
and dMirr/dt [12]. The assumption was justified by considering an Arrhenius rate relation
dMirr/dt ∝ exp(−EB(Hi)/kT ) that involves in effect energy barriers that are all equal in
size.

The conditions of validity of the assumption of an absence of a distribution in
energy barriers, however, need to be clarified. For instance, the magnetization reversal
in amorphous magneto-optic thin films may involve two distinct coercivity mechanisms,
domain nucleation and domain growth, with different coercive forces [17]. A distribution
in energy barriers is also expected from the spatial dispersion in magnetic properties.

The main objective of this paper is to derive the relationship between the different
expressions used to determine the fluctuation field experimentally. Two alternative but
equivalent treatments are considered, under the single assumption of a constant external
field. The first, in section 2.1, does not consider explicitly the demagnetizing field that
may be present in a ferromagnetic material. The second, in section 2.2, considers the
demagnetizing field to derive the intrinsic value of the fluctuation field that provides
direct information on the activation mechanism. The limitations in using the constitutive
equation of Estrin, McCormick and Street [12] and the relationHf = ∂Hi/∂ ln Ṁirr |Mirr

in
treatments of magnetic viscosity [13, 16] are identified. The theory applies to any form of
time dependence; it does not assume a logarithmic decay. The precise form of the time
dependence depends on the choice of the dispersion in energy barriersEB for each activation
mechanism and is not considered at this stage.
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Two examples of the difference between3 = ∂Hi/∂ ln Ṁirr |Mirr
andHf are then given.

The first is the development of a model by Fatuzzo [18] that applies to the magnetic viscosity
of some magneto-optic media. It considers two activation mechanisms via nucleation and
domain growth without a dispersion in the energy barriers. The second is a treatment of the
case that is most common, a single activation mechanism with a dispersion in the energy
barriers. It is shown that in both cases3 = Hf only if the activation volumes of the
moments are identical, and the physical implications are discussed.

2. Theory

2.1. Analytic expressions for the fluctuation field

We consider a ferromagnetic system with a well defined initial state, for instance the
saturation remanence. If a constant external fieldH is applied there is a spontaneous
irreversible response from the moments whose energy barrier has vanished, followed by a
slow viscous decay by thermal activation. The fieldH is then instantaneously removed after
a time intervalt . The remanent magnetizationMirr (that is a measure of any irreversible
changes) is clearly uniquely determined by the choice ofH, t , although other factors, such
as a time-varying internal field, may also be of influence. An equation of state of the form
f (Mirr , H, t) = 0 can be constructed that is constitutive since the detailed form is dependent
on the ferromagnetic material. A Taylor expansion of the magnetization is then carried out
to a power series of small deviationsδH, δ ln(t). Although some different variable may
have been chosen, ln(t) is a natural choice since it is the inverse function associated with
the exponential law for the relaxation time (equation (2)). IfδH, δ ln(t) are sufficiently
small, we retain only the linear terms and define a constitutive equation in differential form
given by

dMirr = S d ln(t)+ χirr dH (6)

where

S(H, t) = ∂Mirr

∂ ln(t)

∣∣∣∣
H

(7)

is the observed coefficient of magnetic viscosity and

χirr (H, t) = ∂Mirr

∂H

∣∣∣∣
t

(8)

is the observed irreversible susceptibility.
Equation (8) is the definition for the irreversible susceptibility appropriate for the study

of magnetic viscosity. Experimentally,χirr is obtained usingχirr = (Mirr (H + δH, t) −
Mirr(H, t))/δH , whereMirr is measured as described above. The common method of
measuringχirr (H, t = 0) from the response to a field pulse of very short but undefined
duration, for example,χirr = dMd(H)/dH , whereMd(H) is the DC demagnetization
remanence curve, is restrictive and also difficult to apply when the time dependence of the
magnetization is very strong, since the results may not be repeatable.

The general form of the definition of the fluctuation field (equation (4)) is

Hf (H, t) = S(H, t)

χirr (H, t)
(9)

showing thatHf may be time dependent. A time dependence may arise from the gradual
variation in the magnetic properties of the moments during the viscous decay.Hf will be
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positive provided that we adopt the convention thatH > 0 in the direction of switching of
the magnetization. Note also thatχirr , S,Hf may alternatively be regarded as functions of
(H,Mirr ) or (Mirr , t).

An alternative but equivalent definition of the fluctuation field is obtained directly from
the constitutive relation (6):

Hf = − ∂H

∂ ln t

∣∣∣∣
Mirr

. (10)

Equation (10) has previously been derived for a system in which the metastable states
all have the same value of activation energy [10] and also for magneto-optic thin films
in which magnetic reversal is dominated by the expansion of the periphery of a region of
reversed magnetization [11]. In the present treatment, however, there are no assumptions,
so the fluctuation field can rigorously be determined experimentally by simply measuring
the time required for the magnetization to reach a certain value. For instance, it is related
to the time dependence of the coercivity

Hf (Mirr = 0) = − dHC
d ln(t)

(11)

that is of importance in magnetic recording [19, 20]. The timet1/2 for magnetization decay
to zero in commercial magnetic tapes is found to fit an empirical relation of the form
t1/2 = T0 exp(−α δHC), whereT0 is a constant [19]. The fluctuation field in this case is
given byHf = 1/α. The relationHf = 1/α has previously been demonstrated for a system
of perfectly aligned Stoner–Wohlfarth particles with energy barriers all of equal size [21],
whereas it is clear from the present discussion that it is of more general validity.

Equation (6) can be expressed in differential form as

d ln(t) = 1

S
dMirr − 1

Hf
dH. (12)

The right-hand side of equation (12) is an exact differential. The equality of the second
derivatives can be expressed as

∂

∂H

(
1

S

)∣∣∣∣
Mirr

= −∂H
−1
f

∂Mirr

∣∣∣∣
H

(13)

leading to

∂S

∂H

∣∣∣∣
Mirr

= −χ2
irr

∂Hf

∂Mirr

∣∣∣∣
H

. (14)

Similarly, from the differential equation dH = (1/χirr ) dMirr −Hf d ln(t) we obtain

∂χirr

∂H

∣∣∣∣
Mirr

= −χirr
Hf

∂Hf

∂H

∣∣∣∣
t

(15)

Using equations (7), (9), (10), the fluctuation field can be expressed as

Hf = S

χirr
= S

/(
− ∂S
∂H

∣∣∣∣
Mirr

+ ∂S

∂H

∣∣∣∣
Mirr

− ∂Mirr

∂ ln(t)

∣∣∣∣
H

∂ ln(t)

∂H

∣∣∣∣
Mirr

)
= 1

/(
− 1

S

∂S

∂H

∣∣∣∣
Mirr

+ ∂

∂H
(ln S − ln t)|Mirr

)
= 1

/(
− 1

S

∂S

∂H

∣∣∣∣
Mirr

+ ∂ ln(Ṁirr )

∂H

∣∣∣∣
Mirr

)
. (16)
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Hence

1

Hf
= − 1

S

∂S

∂H

∣∣∣∣
Mirr

+ ∂ ln(Ṁirr )

∂H

∣∣∣∣
Mirr

. (17)

Equation (17) is valid for any form of time dependence. Next, we consider some cases
of special interest.

2.1.1. The case where∂S/∂H |Mirr
= 0. If the coefficient of magnetic viscosity is a single-

valued function of the magnetization(S(Mirr )), then

∂S

∂H

∣∣∣∣
Mirr

= 0. (18)

It is possible to test experimentally whether equation (18) applies. The relaxation curves
Mirr(t), obtained for different values of the applied fieldH , should superimpose on a single
curveMirr(t) = F(t/t0) on renormalizing the time.t0 is the time required forMirr to reach
a fixed valueM0. A convenient choice is the timet1/2 for the magnetization to vanish
(M0 = 0) and we write

Mirr(t) = F(t/t1/2). (19)

The superposition occurs if the fluctuation field is independent of the magnetization or
the time and is a single-valued function of the field (equation (14)):

S(Mirr )⇐⇒ ∂Hf

∂Mirr

∣∣∣∣
H

= ∂Hf

∂t

∣∣∣∣
H

= 0⇐⇒ Hf (H). (20)

Clearly, for a given value ofH , the curvesS(Mirr ), χirr (Mirr ) exhibit a maximum for
the same value ofMirr . The fluctuation field is also given by (equation (17))

Hf = ∂H

∂ ln(Ṁirr )

∣∣∣∣
Mirr

. (21)

It is clear that, from equations (10), (21),δ ln Ṁirr |Mirr
= −δ ln(t)|Mirr

. Equation (6)
can therefore be expressed as

dH = 1

χirr
dMirr −Hf d ln(t) = 1

χirr
dMirr +Hf d(ln Ṁirr ) (22)

where

χirr (H, t) = ∂Mirr

∂H

∣∣∣∣
Ṁirr

(23)

andHf is given by equation (21). The constitutive equation (22) is appropriate when the
time dependence of the magnetization satisfies the condition (18).

2.1.2. The case where∂χirr/∂H |Mirr
= 0. The irreversible susceptibility is a single-valued

function of the magnetization if the fluctuation field is independent ofH andMirr , and can
be regarded as a single-valued function of time (equation (15)):

χirr (Mirr )⇐⇒ ∂χirr

∂H

∣∣∣∣
Mirr

= ∂Hf

∂H

∣∣∣∣
t

= ∂Hf

∂Mirr

∣∣∣∣
t

= 0⇐⇒ Hf (t). (24)

For a given value oft , the curvesS(H), χirr (H) then exhibit a maximum value at the
same value of the field, in the region of the remanent coercivity.
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2.1.3. The case where∂S/∂H |Mirr
= ∂χirr/∂H |Mirr

= 0 If S and χirr are both single-
valued functions ofMirr , the fluctuation field can be regarded as a constant (equations (20),
(24)):

S(Mirr ) = Hfχirr (Mirr ). (25)

The coercivityHC is then logarithmically dependent on time (equation (11)).
There is experimental evidence that for some Tb–Fe–Co thin films [11, 22] the

considerations in sections 2.1.1–2.1.3 apply. A more detailed presentation of the evidence
is given in section 5.

2.1.4. The case of a monodispersed system.Next, we consider thermal relaxation over
energy barriersEB that are all of equal size, dependent on the fieldH but invariant over time.
Two implicit assumptions are involved, the absence of a time-dependent demagnetizing field
and a negligible probability of activation back to the original state. In section 3, it is shown
thatEB may only be an effective barrier arising from two different activation mechanisms.

The time dependence of the magnetization is given by

Mirr(t) = F [R(H)t ] (26)

whereR ∝ e−EB/kT is a rate of activation that remains constant with time. The rate of
change of the magnetization is derived as

Ṁirr = Ṁirr (EB = 0)e−EB(H)/kT . (27)

Equation (26) is a sufficient condition for the superposition of the relaxation curves
(equations (18), (19)) and in fact equation (27) implies a unique relationship between
Mirr , Ṁirr , H that demonstrates the validity of the constitutive relation (22) [12]. In section
4, however, it will be shown that equation (18) is compatible with a dispersion in barriers,
so equation (26) is not necessary for the superposition to be observed.

The fluctuation field obtained from equations (21), (27) isHf = −kT /(∂EB/∂H)|Mirr

and, using equation (20), it may be expressed as

Hf = −kT
/∂EB
∂H

∣∣∣∣
t

= −kT
/∂EB
∂H

∣∣∣∣
Mirr

. (28)

2.2. Consideration of the demagnetization factor

Here we present an alternative treatment that considers explicitly the internal fieldHi in a
mean-field approximation

Hi = H −DM (29)

whereD is a scalar demagnetization factor andM = Mirr +Mrev.
If a sample with a well defined initial state is subject to a constant fieldH for a time

interval t , the remanent (Mirr ) and the reversibleMrev-component of the magnetization can
be evaluated. Using equation (29), it can be shown that the internal fieldHi is uniquely
determined byMirr andt , and we define therefore a constitutive equationg(Mirr , Hi, t) = 0
that in differential form is given by

dMirr = ∂Mirr

∂ ln(t)

∣∣∣∣
Hi

d ln(t)+ ∂Mirr

∂Hi

∣∣∣∣
t

dHi = S0 d ln(t)+ χiirr dHi (30)

whereS0, χ
i
irr are the intrinsic values ofS, χirr respectively, i.e., the values that would be

observed if there was no demagnetizing field (D = 0).
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The intrinsic value of the fluctuation field is given by

Hi
f (Hi, t) =

S0(Hi, t)

χiirr (Hi, t)
= − ∂Hi

∂ ln t

∣∣∣∣
Mirr

. (31)

As in section 2,Hf will be positive if we adopt the convention thatHi > 0 in the
direction of switching of the magnetization, i.e.D > 0 for magnetizing andD < 0 for
demagnetizing processes.

We consider next the relationship between the intrinsic and observed values of
χirr , S,Hf . Equation (30) implies that

∂Mirr

∂H

∣∣∣∣
t

= ∂Mirr

∂Hi

∣∣∣∣
t

∂Hi

∂H

∣∣∣∣
t

(32)

leading to

χiirr =
χirr

1−Dχ (33)

whereχ = ∂M/∂H |t . Using equations (30), (31) we obtain

∂ ln t

∂H

∣∣∣∣
Mirr

= ∂ ln t

∂Hi

∣∣∣∣
Mirr

∂Hi

∂H

∣∣∣∣
Mirr

(34)

leading to

Hi
f = Hf

(
1−D∂Mrev

∂H

∣∣∣∣
Mirr

)
. (35)

Using equations (9), (31), (33), (35), we obtain

S0 = S
[

1−D ∂Mrev/∂H |Mirr

1−Dχ
]
. (36)

SinceDχ > 0, it can be verified thatχiirr > χirr , H i
f 6 Hf .

The reversible component of the magnetization is dependent on the magnetic
configuration (Mirr ), since the contribution of a magnetic moment toMrev may change
following the activation process. Using equation (6) we obtain an expression for
the reversible susceptibility that considers explicitly the dependence on the irreversible
magnetization:

χrev = ∂Mrev

∂H

∣∣∣∣
t

= χirr ∂Mrev

∂Mirr

∣∣∣∣
t

. (37)

The definition forχrev is consistent with equation (8). It is appropriate for the study of
magnetic viscosity, but different to∂Mrev/∂H |Mirr

which is normally used in the study of
static properties.

The relations (33), (35), (36) are different in their detailed form to the expressions given
by Street, Day and Dunlop [23]. In their model, the relationship between the intrinsic and
observed susceptibility is of the formχiirr = χirr/(1− Dχirr ), and similarly forχirev, χ

i .
This definition, however, results in the conditionχi = χirev + χiirr not being satisfied.

The intrinsic fluctuation field can be expressed as in equation (17):

1

Hi
f

= − 1

S0

∂S0

∂Hi

∣∣∣∣
Mirr

+ ∂ ln(Ṁirr )

∂Hi

∣∣∣∣
Mirr

. (38)
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2.2.1. The case where∂S0/∂Hi |Mirr
= 0. Here it is shown that this is the case that

was considered in references [12, 13, 15, 16] and a criterion is derived to determine
experimentally when it is applicable.

The treatment in section 2.1.1 is here valid on replacingH,χirr , S,Hf by the respective
intrinsic valuesHi, χiirr , S0, H

i
f . In particular, the constitutive relation (22) can be expressed

as

dHi = 1

χiirr
dMirr +Hi

f d(ln Ṁirr ) (39)

where

χirr (Hi, t) = ∂Mirr

∂Hi

∣∣∣∣
Ṁirr

(40)

Hi
f =

∂Hi

∂ ln(Ṁirr )

∣∣∣∣
Mirr

. (41)

If the reversible magnetization can be ignored or alternatively ifD = 0, then
equation (35) reduces toHf = Hi

f and using equations (17), (38) we obtain

1

S0

∂S0

∂Hi

∣∣∣∣
Mirr

= 1

S

∂S

∂H

∣∣∣∣
Mirr

. (42)

The validity of equation (39) used in references [12, 13, 15, 16] can be established
experimentally—for instance, by testing whether the following sufficient condition is
satisfied:χrev = 0 (or D = 0) coupled with an invariance of the shape of the relaxation
curves with applied field (equation (18)).

The validity of equation (39) does not arise, however, as is implicitly assumed in
reference [12], from the absence of a dispersion in the energy barriers. If the energy
barriers of all moments are equal in sizeEB(Hi), but vary in time, the general form of the
relaxation curve is

Mirr(t) = F(R(Hi)t) = F(R(H, t), t). (43)

Using τ = R(Hi)t , it can be shown that

∂S

∂H

∣∣∣∣
Mirr

= dMirr

dτ
τ 2 ∂

∂H

[
1

R2

∂R

∂t

∣∣∣∣
H

]∣∣∣∣
Mirr

. (44)

Since the rate of relaxation is time dependent,R(t), it is clear that equation (43) is not a
sufficient condition for the validity of equation (22).

3. A model of the time dependence of magneto-optic media

In magneto-optic thin films, the reversible component of the magnetization can be neglected
to a good approximation(Mirr = M). For example, the measured value of the saturation
remanence in ultrathin Co films isMRS > 0.99MS [24]. The intrinsic and observed values
of the fluctuation field are then equivalent(Hf = Hi

f ) and are independent of the sample
shape (equation (35)). The main objective, here, to evaluateHf , can therefore be achieved
using a model by Fatuzzo [18] that does not consider the demagnetizing field(D = 0).
The values ofχirr , S obtained from the Fatuzzo model, however, should be corrected for
the demagnetizing field (equations (33), (36)), an important experimental consideration.
Irreversible magnetic changes against the direction of the applied field are negligible in
practice and are ignored by the model.
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The Fatuzzo model considers two concurrent activation mechanisms: domain nucleation
and domain growth. The model assumes the nucleation of circular domains at a constant
rateR with an initial radiusrc and subsequent growth at a constant velocityv. The time
dependence of the magnetization is then given by

M(t) = MS(2eg(τ,κ) − 1) (45)

whereτ = Rt, κ = v/Rrc and

g(τ, κ) = −2κ2

[
1− (τ + κ−1)+ (τ + κ

−1)2

2
− e−τ (1− κ−1)− 1− τ

2κ2

]
. (46)

The shape of the curvesM(t) depends only on a single parameterκ. On fitting the
experimental curvesM(t) to the analytic function (46) [25], an estimate ofκ is obtained
that provides a measure of the relative balance between the rates of nucleation and domain
growth. The rate of nucleationR and the rate of expansionv of the domain radius are
related to energy barriersEN,EW according to Arrhenius relations (equation (2)) of the
form

R = f0 e−EN/kT

v = f0d e−EW/kT (47)

whered is the average separation between pinning sites.κ is then given by

κ = d

rc
e−(EW−EN)/kT . (48)

The coefficient of magnetic viscosity and the irreversible susceptibility are obtained
using equations (7), (8):

S = 2MS eg
∂g

∂ ln(t)

∣∣∣∣
H

(49)

χirr = 2MS eg
∂g

∂H

∣∣∣∣
t

. (50)

The fluctuation field is then obtained from equations (49), (50):

Hf = τ ∂g
∂τ

/(∂g
∂τ

dτ

dH

∣∣∣∣
t

+ ∂g
∂κ

dκ

dH

∣∣∣∣
t

)
(51)

and using equations (47), (48)

Hf = −kT
/(

(1− λ)∂EN
∂H

∣∣∣∣
t

+ λ∂EW
∂H

∣∣∣∣
t

)
= kT

MS

1

(1− λ)VN + λVW (52)

where

λ = κ ∂g
∂κ

/(
τ
∂g

∂τ

)
(53)

andVN, VW are the activation volumes of thermo-activated domain nucleation and domain
growth respectively defined from

VN(H) = − 1

MS

dEN
dH

VW(H) = − 1

MS

dEW
dH

. (54)

Equation (54) is the definition of the activation volume given by Gaunt [26] that is
consistent with the definition of Wohlfarth (equation (5)) in the case of strong domain
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wall pinning and no nucleation. The difference between the two definitions is clear from
equations (5), (52):

VA = (1− λ)VN + λVW . (55)

VN, VW are related to individual activation events, soVA may be regarded as an average
value of the activation volume.

The energy barriersEN,EW are invariant during magnetic reversal in the model of
Fatuzzo (since the rates of activation are constant), so the activation volumes defined by
equation (54) are independent of the time or the magnetization.

Figure 1. The dependence of the factorλ defined by equation (53) on the magnetizationM.
Results are presented for different values of the parameterκ.

The time dependence of the fluctuation field is determined by a single parameterλ(τ, κ).
The variation ofλ during magnetic reversal is shown in figure 1, and the variation with
κ in figure 2. Two basic trends can be identified. First, an increase in the value ofλ is
observed during magnetic reversal, from a minimum valueλ = 0 at t = 0 (M/MS = 1) to
a maximum value when the reversal is complete. This arises from the relative increase of
the contribution of the domain growth to the magnetic reversal, in particular during the later
stages of the reversal process (figure 1). Hence, no significant increase ofλ is observable,
when the reversal is primarily by domain nucleation(κ � 1) (figure 1). Secondly, for the
same reason, for any fixed value ofM, an increase of the value ofλ with κ is observed in
figure 2 to a maximum valueλ = 2/3 (as will be shown shortly).

The dependence of theχirr , S,Hf on magnetization during the reversal process is shown
in figure 3 forκ = 0.2, VW/VN = 1.4. The fluctuation field has an initial value at saturation
Hf (τ = 0) = kT /(MSVN) and decreases during the entire reversal process, as a result of
the associated increase ofλ (figure 1) and the choice made for the ratioVW/VN > 1. The
limit Hf = kT /MSVW (λ = 1) is never reached, probably as the result of the existence of
a finite probability of nucleation throughout the reversal process. A reduction by 10% was
detected in a Gd–Tb–Fe film [10, 25], and although the activation volumesVN, VW are not
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Figure 2. The dependence of the factorλ on the parameterκ. Results are presented for different
values of the resolved magnetization:M/MS = 0.95, 0.5, 0,−0.5,−0.999.

reported, the data for similar Gd–Tb–Fe films [25] indicate thatVW > VN as expected from
figure 3. The large reduction by 10% occurs since the parameterκ measured for this film
has an optimal valueκ = 1 [25]. This is shown more clearly in figure 1. Forκ � 1 or
κ � 1 the value ofλ remains approximately constant for the range of magnetization values
that is accessible experimentally and the observed variation ofHf would be imperceptible
in this case within experimental error. In fact, a reduction ofHf by a mere 3% was reported
for a thin Tb–Fe–Co film, where magnetic reversal is dominated by domain wall motion
(κ � 1) [11].

Next, we consider three cases of special interest in more detail.

(i) κ � 1. If the magnetic reversal occurs primarily by domain nucleation,g ≈ −τ and
λ→ 0 and the fluctuation field is given by

Hf = −kT
/dEN

dH
= kT

MSVN
. (56)

(ii) κ � 1. If the magnetic reversal is dominated by domain expansion, it was
shown by Fatuzzo [18] thatRt � 1. Equation (46) then reduces tog = −κ2τ 3/3 and
limκ→∞ λ = 2/3. The fluctuation field can be expressed as

Hf = −kT
/dĒB

dH
= kT

MS [(VN + 2VW)/3]
(57)

where

ĒB = EN + 2EW
3

. (58)

The relaxation can be described by a single barrierĒB . If R′ is an effective rate given
by

R′ = f0 e−ĒB/kT (59)
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Figure 3. The dependence of the normalized coefficient of magnetic viscosityS̄ =
−S/MS , irreversible susceptibility ¯χirr = −χirr /(M2

SVN/kT ) and fluctuation fieldH̄f =
Hf /(kT /MSVN) on magnetization. The results were obtained usingκ = 0.2 andVW/VN = 1.4.

and τ ′ = R′t , the time decay can be expressed in a form that does not include the field-
dependent parameterκ:

M(τ ′) = MS [2e−(d
2/3r2

c )τ
′3− 1]. (60)

(iii) dκ/dH = 0. This condition is satisfied when the activation volumes of nucleation
and domain growth are equal in size, i.e.,VN(H) = VW(H), for all fieldsH . The fluctuation
field can then be written directly from equation (52) as

Hf = −kT
/dEN

dH
= −kT

/dEW
dH
= kT

MSVN
. (61)

For the three cases considered above, the time dependence of the irreversible magnet-
ization can be expressed as

M(τ ′(H)) = M(R′(H)t) (62)

whereR′ = R for the cases (i) and (iii), and is given by equation (59) for case (ii). The
shape of the relaxation curves is then invariant with applied field (equation (26)). The
average activation volume isVA = VN , if κ � 1 or dκ/dH = 0, andVA = (VN + 2VW)/3,
if κ � 1 (equation (5)). The fluctuation field is invariant with magnetization (equation (20));
however,χirr may still depend on the applied field.

The constitutive equation (39) is often used [10, 12] to describe the time dependence of
magneto-optic thin films. It is therefore interesting to consider to what extent the relation
3 = ∂H/∂ ln Ṁ|M (equation (21)) approximates the exact value of the fluctuation field. A
numerical evaluation of3,Hf was carried out for the system whose time dependence is
described by the Fatuzzo function (45). The results forHf obtained using equations (9),
(10) are indistinguishable. The ratio3/Hf is shown by the isoline curves of the contour
maps in figures 4 and 5. The results are consistent with the previous discussion, i.e., if



The fluctuation field of ferromagnetic materials 2635

Figure 4. A contour map of the ratio3/Hf as a function ofκ and the ratio of the activation
volumesVW/VN whenM = 0.

κ � 1, κ � 1 or VW = VN , the condition∂S/∂H |M = 0 is satisfied and3 = Hf . In
general, however, there may be a difference between3 andHf . For instance, ifVW > VN ,
then dκ/dH > 0 (equations (48), (54)), and the Fatuzzo model predicts that∂S/∂H |M > 0
(see figure 4 of reference [25]). According to equation (17),3/Hf < 1, as is observed in
figure 4. Figure 5 indicates in addition that a significant difference between3 andHf may
be observable for any value of the magnetization, within a certain range of values forκ.

Suppose that in addition to the condition (18), the assumption is also made that the
average activation volumeVA is independent of the applied field. The fluctuation field
Hf is then constant in magnitude (equations (5), (24), (25)) andχirr is a single-valued
function of the magnetization. These considerations appear to apply for some Tb–Fe–Co
thin films [22], where both a weak dependence ofHf on H,Mirr and the superposition
of all of the χirr (H, t), S(H, t) curves when plotted as a function of magnetization are
observed. Equations (11), (25) also predict in this case a logarithmic time dependence of
the coercivity that is in agreement with experimental observation [11, 27].

A more detailed account of the coercivity is obtained from equation (45):

g(τ, κ)+ ln 2= 0. (63)

If the activation volumes are independent of the applied field, the energy barriersEN,EW
are given by

EN = E0
N −MSVNH

EW = E0
W −MSVWH.

(64)

The rate of nucleationR can be expressed as

R = R0 eMSVNH/kT (65)
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Figure 5. A contour map of the ratio3/Hf as a function ofκ and the resolved magnetization
M/MS usingVW/VN = 10.

where

R0 = f0 e−E
0
N/kT . (66)

The solutionτ0(κ) of equation (63) can be expressed as

τ0(κ) = R(HC)t1/2 = R0 eMSVNHC/kT t1/2. (67)

One may also define the temperature- and time-independent intrinsic coercive force of
nucleation,HN , as the field that makes the energy barrier of nucleation vanish:

HN = E0
N

MSVN
= kT

MSVN
ln

[
f0

R0

]
. (68)

Using equations (67), (68), we obtain an expression for the time dependence of the
coercivity:

HC(t) = HN − kT

MSVN
ln

[
f0t1/2

τ0(κ)

]
. (69)

The dependence ofτ0 on κ is shown in figure 6. If condition (18) is not satisfied (i.e.,
dκ/dH 6= 0 andκ in neither too small nor too large) the dependence ofκ on the fieldH , as
shown in figure 6, becomes significant and equation (69) indicates that it results in a strictly
non-linear logarithmic time dependence for the coercivity. Conversely, if (18) is satisfied,
the gradient dHC/d ln(t) provides information through equations (5), (11) on the effective
activation volumeVA. In figure 7, the logarithmic time dependence of the coercivityHC
is shown for different values chosen forκ, assuming that dκ/dH = 0. An increase in the
relative rate of domain growth results in lower coercivity for a fixed time of measurement
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Figure 6. The resolved timeτ0 at the coercive point as a function ofκ.

Figure 7. The logarithmic time dependence of the resolved coercivityHC/HN for different
values ofκ, usingkT /E0

N = 0.01.

as is physically reasonable. In previous work [25], the logarithmic time dependence of the
coercivity was demonstrated forκ � 1 andκ � 1 only.

An increase of the fluctuation field with coercivity is predicted under some
special conditions, for instance, on allowing variations in the value of the factor
(d/rc) exp(−E0

W/kT ) and consideringVW/VN > 1. The variation of the coercivityHC
in this case arises from the dependence onτ0(κ). A typicalHf versusHC plot is shown in
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Figure 8. The dependence of the normalized values ofHC versusHf . The curve was
obtained usingf0t1/2 = 109, E0

N/kT = 27, VW/VN = 3 and by allowing variations in
(d/rc) exp(−E0

W/kT ).

figure 8. The observed increase has no connection with the Barbier relation lnHf ∝ HC that
is observed for a wide range of materials of different magnetic hardness [6, 28], including
magneto-optic media [10, 25]. The sharp increase in the coercivity of Gd–Tb–Fe films [25]
is not accompanied with a substantial variation inκ. The Barbier relation appears to involve
rather a relation between the intrinsic activation energiesE0

N,E
0
W and the fluctuation field,

and requires therefore a study of the detailed activation mechanisms.
The Fatuzzo model predicts an exponential decay of the magnetization when the

nucleation process is dominant; however, the decay observed experimentally is logarithmic
[24]. The distribution of energy barriers should then be considered and a detailed study
follows in the next section.

4. Magnetic viscosity arising from a single activation mechanism

The general treatment of a dispersion in the energy barriers is presented in section 4.1. The
case of the barriers being coupled to a single physical parameter is considered in section 4.2.
Finally in section 4.3., we consider the physical implications when the shape of a sample
is allowed to vary.

4.1. Relaxation over a dispersion of the energy barriers

As in the previous section, we ignore the demagnetizing field(D = 0) and any magnetic
changes that are either reversible or against the direction of the applied field, to simplify
the presentation. Since the objective is simply to establish the relation between3 =
∂H/∂ ln Ṁ|M andHf , the precise form of the time dependence is not important and these
assumptions should not affect our conclusions.
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The time dependence of the magnetization of a system of perfectly aligned moments is

M(H, t) = MS

(
2
∫ ∞

0
e−t/τ0f (τ0) dτ0− 1

)
(70)

wheref (τ0) is the dispersion in relaxation times. Sinceτ0 is exponentially dependent on
the energy barrierEB (equation (2)), it is possible to define a time-dependent activation
energyE′B(t) = kT ln(f0t) such that e−t/τ0 ≈ 0 if EB < E′B and e−t/τ0 ≈ 1 if EB > E′B .
The time dependence of the magnetization can therefore be expressed as

M(H, t) = MS

[
2
∫ ∞
E′B(t)

f (EB,H) dEB − 1

]
(71)

where f (EB,H) is the normalized distribution of energy barriers. The coefficients of
magnetic viscosity and irreversible susceptibility are obtained using equations (7) and (8)
respectively:

S(H, t) = −2MSf (E
′
B,H)

dE′B
d ln(t)

= −2MSkTf (E
′
B(t),H) (72)

χirr (H, t) = 2MSf (E
′
B,H)

dEB
dH

∣∣∣∣
EB=E′B(t)

. (73)

The fluctuation field is therefore given by

Hf (H, t) = −kT
/dEB

dH

∣∣∣∣
EB=E′B(t)

. (74)

Equation (74) is similar to the expression derived by Gaunt [29]; however, it considers
also the time dependence ofHf . We are interested in evaluating the term∂S/∂H |M that is
given by

∂S

∂H

∣∣∣∣
M

= −2MSkT
∂f (E′B,H)

∂H

∣∣∣∣
M

. (75)

Substitution of equations (72), (73) in equation (6) gives a relationship betweenδE′B
andδH when the magnetization is held constant:

kT
∂ ln(t)

∂H

∣∣∣∣
M

= ∂E′B
∂H

∣∣∣∣
M

= dEB
dH

∣∣∣∣
EB=E′B(t)

. (76)

The field dependence of the energy barriers is determined by the individual activation
volumes of the moments, that are given from equations (5), (74) as

VA = − 1

MS

dEB
dH

∣∣∣∣
EB=E′B(t)

. (77)

An implicit assumption in our treatment is the continuous variation of the energy barriers
EB with applied field. It is therefore possible to apply the continuity relation

∂f

∂H
+ ∂

∂EB

(
f

dEB
dH

)
= 0. (78)

A Taylor series expansion off , truncated to first order, gives

f (EB + δEB,H + δH)− f (EB,H) ≈ ∂f

∂H
δH + ∂f

∂EB
δEB (79)
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valid for arbitrary but small variationsδEB, δH . Equation (78) implies correlated variations,
such thatδEB/δH = dEB/dH . Using equations (78), (79) we obtain the following
expression valid to first order:

f (EB + δEB,H + δH)− f (EB,H) ≈ −f ∂

∂EB

(
dEB
dH

)∣∣∣∣
H

δH. (80)

At constantM, equation (76) implies a similar correlation inδE′B andδH . Application
of equation (80) in equation (75) yields

∂S

∂H

∣∣∣∣
M

= 2MSkTf (E
′
B(t),H)

∂

∂EB

(
dEB
dH

∣∣∣∣
EB=E′B

)∣∣∣∣
H

. (81)

Using equations (72), (77) we obtain

1

S

∂S

∂H

∣∣∣∣
M

= − ∂

∂EB

(
dEB
dH

∣∣∣∣
EB=E′B

)∣∣∣∣
H

= MS

∂VA

∂EB

∣∣∣∣
H

. (82)

The relation between3 = ∂H/∂ ln Ṁ|M andHf is given by equations (17), (82). If
the activation volumeVA of all moments is identical, i.e.,F(VA) = δ(VA − V 0

A), then the
term (1/S) ∂S/∂H |M = 0 and3 = Hf . The relaxation curves at different fields then fit on
a single curveM(t) = F [ln(t/t1/2)] (section 2.1.1). This relationship was observed in Co
films of thickness of the order of few atomic monolayers [24] and results from the activation
volume being decoupled from the physical mechanism that gives rise to the dispersion in
energy barriers.

4.2. Dependence of the energy barriers on a single parameter

Suppose that the energy barriers are coupled to a single physical property, for example,
the volumeV of each magnetic moment, and that the variationEB(V ) is monotonic on
average. The energyE′B would then be associated with some critical volumeVC(H, t). The
normalized distribution functiong(V ) is obtained from

g(V ) = f (EB,H)∂EB
∂V

∣∣∣∣
H

. (83)

The coefficient of magnetic viscosity may then be expressed as

S = −2MSkT g(VC)

[
∂E′B
∂VC

∣∣∣∣
H

]−1

. (84)

The term∂S/∂H |M can be expressed as

∂S

∂H

∣∣∣∣
M

= ∂S

∂H

∣∣∣∣
VC

= −2MSkT g(VC)
∂

∂H

[
∂E′B
∂VC

∣∣∣∣−1

H

]∣∣∣∣
VC

. (85)

Hence, we obtain

1

S

∂S

∂H

∣∣∣∣
M

= ∂

∂H

[
ln

(
∂E′B
∂VC

∣∣∣∣−1

H

)]∣∣∣∣
VC

= MS

∂VA

∂EB

∣∣∣∣
H

(86)

in agreement with equation (82). If the dependenceEB(V,H) is known explicitly, then
the relation between3,Hf can be evaluated from equation (86). For exchange-decoupled
domains that reverse coherently [30],

E′B = KUVC
(

1− H

HK

)2

(87)
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whereHK = 2KU/MS , and substitution in equation (86) yields

1

S

∂S

∂H

∣∣∣∣
M

= 2

HK

1

1−H/HK (88)

so3 6= Hf .

4.3. Variation of the sample shape

It is interesting to consider briefly the effects of a variation of the shape of the sample, by
allowing the demagnetization factorD to increase. To simplify the discussion, reversible
magnetization changes are ignored.

The observed values ofχirr , S are given byχirr = χiirr/(1 + Dχiirr ) and S =
S0(1− Dχirr ) (section 2.2). SinceDχirr > 0, a reduction in the observed valuesχirr , S
arises from an increase of the magnitude of the demagnetizing fieldDM, that is closely
related to the observed shearing of the hysteresis loops. The shearing occurs since the
irreversible response of the magnetization(S0, χ

i
irr ) is dependent on the dispersion in the

energy barriersf (EB) and the size of each barrier is modified by the internal fieldHi .
A larger field variation1H is required for a net change1Hi , when the demagnetizing
field is strong. The fluctuation field, however, is independent of the dispersionf (EB)

(equation (74)) and it is not surprising that no demagnetizing field correction is required
(Hf = Hi

f ).
The precise form of the dependence of the energy barriers on the internal field

EB(Hi = H − DM) is determined by the activation mechanism, and information can
be provided by measurement ofHf . A linear dependence of the energy barriers on the
demagnetization factor arises, for example, whenHf is invariant with the applied field
(section 2.1.2).

5. Discussion

The fluctuation field of a magnetic material, under constant external-field conditions, can be
determined experimentally from relaxation curvesMirr(t) only, usingHf = S/χirr or the
waiting time method:Hf = −∂H/∂ ln(t)|Mirr

. If the shape of the curves is independent of
the choice of applied field, i.e. they fit a single curve(Mirr (t) = F(t/t1/2)) on renormalizing
the time, then∂S/∂H |Mirr

= 0 and the fluctuation field is given by an alternative expression:
Hf = ∂H/d lnṀirr |Mirr

. In practice, however, the usefulness of this expression is restricted
in the region of remanent coercivity [14], since any variation1 ln Ṁirr must be large to
be measured without substantial experimental error. The waiting time method is therefore
more rigorous. It is also simpler than the use ofHf = S/χirr . For instance, the intrinsic
value of the fluctuation field can be deduced directly forχrev = 0 using equation (35), and
does not require a correction ofS, χirr for the demagnetizing field.

The present theory is suggestive of a connection between two common experimental
observations: the superposition of the relaxation curves(Mirr (t) = F(t/t1/2)) and the
invariance ofHf with magnetization. The former has been observed for magneto-optic
media such as Gd–Fe, Gd–Tb–Fe and Tb(Co)-based alloys [25], Tb–Fe–Co [11] and
ultrathin Co films [24]. A slow variation ofHf with magnetization has been reported for
magneto-optic media such as Gd–Tb–Fe [10] and Tb–Fe–Co [11], CrO2 recording particles
[16], sintered Pr2Fe14B [16] and isotropic Nd–Fe–B permanent magnets [12]. At present
strong evidence for the existence of a connection between the two experimental observations
exists only in the case of Tb–Fe–Co [11].
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It is interesting to consider the physical reason for the slow variation of the fluctuation
field with magnetization. The fluctuation field is then dependent on some averageVA over
the activation volumes of the moments switching during a certain time interval, and each
of these is determined by the individual mechanism of reversal (equations (5), (55), (74)).
Givord et al [31] have shown thatVA = δ3 in NdFeB sintered magnets, whereδ is the
average domain wall width. The activation volume of elongated particles such as CrO2 is
much smaller than the actual particle size [32] and may be dependent on the particle cross-
sectional area and domain wall energy [33]. These two examples indicate the possibility
that the activation volume is determined by the intrinsic material properties and may only
be weakly correlated to the grain size.

The time dependence curves cannot be made to superimpose for all magnetic materials,
for instance Tb/Fe [34] and Co/Pt [27] multilayers. In this case the constitutive relation (6)
rather than (22) should be used.

By development of the theory of Fatuzzo [18], the fluctuation field for magneto-optic
thin films was evaluated. The expression derived by Gaunt (equation (74)) is no longer
applicable, since it involves the implicit assumption of a single activation mechanism. The
fluctuation field was shown to exhibit a variation in strength during magnetic reversal if
there is a difference in the activation volumes of nucleation and wall motion that arises
from the gradual increase of the relative contribution of domain growth to the irreversible
magnetic changes during the reversal process. A similar but rather small variation was
detected in a Gd–Tb–Fe thin film [10]; however, to test the theory the measurement of the
activation volumes of nucleation and wall motion is also required. If the activation volume
of a magneto-optic thin film is determined experimentally using the definition adopted by
Wohlfarth [6]: VA = kT /(MSHf ), this value represents some average over the activation
volumes of nucleation and wall motion. The relative balance is described by the factorλ

in the model (equation (53)). The value ofλ appropriate for magnetic reversal occurring
primarily by domain growth (λ = 2/3) was experimentally verified by Labruneet al [25].
The present treatment allows the evaluation of that factor in other cases as well.

The condition ∂S/∂H |Mirr
= 0 is satisfied in the Fatuzzo model if the magnetic

reversal is primarily by domain wall motion or when the activation volumes of thermo-
activated nucleation and wall motion are identical. If the magnetic reversal is by continuous
nucleation, the Fatuzzo model is not appropriate and a different approach is required that
considers the dispersion in the energy barriers. The condition∂S/∂H |Mirr

= 0 then is
satisfied only if there is no associated dispersion in the activation volumes. The relaxation
curves then should fit a relationM(t) = F [ln(t/t1/2)] in agreement with experimental data
on ultrathin Co films [24]. This relation does not represent, however, a universal law,
since it is not satisfied, for example, by fine-particle systems that exhibit coherent magnetic
reversal.

In summary, it appears that the hard ferromagnetic materials can be classified into two
categories.

(a) Magnetic materials for which∂S/∂H |Mirr
= 0 that exhibit an absence of a dispersion

in activation volumes (e.g., some Tb–Fe–Co thin films and possibly CrO2 recording particles,
Nd–Fe–B permanent magnets, and multi-domain particles).

(b) Magnetic materials such as those exhibiting coherent magnetic reversal (single-
domain particles) and multilayers for magneto-optic recording for which the above
considerations do not apply.

The available experimental evidence is rather limited at present and more data are
needed to test the predictions of the theory.
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[1] Néel L 1949Ann. Geophys.5 99
[2] Gaunt P 1977J. Appl. Phys.48 3470
[3] Street R and Woolley J C 1949Proc. Phys. Soc.A 62 562
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